Even if risk neutral drift is zero, there is "vol drift" a.k.a. Ito correction. If you want to get technical, a stochastic differential equation Code: dS_t = rS*dt + sigma * S * dW_t has an analytical solution Code: S_t = S * exp(t*r - t *0.5*sigma^2) * exp(sigma * W_t) The sigma square terms is there because exponential function W_t (a stochastic variable) has higher expectation than exponential function of E(W_t), i.e. Jensen's inequality.
I think I've found a new simple formula. It gives similar Call prices for K=S, but diverging the bigger t is. Now trying to build-in also the case K != S. Here's an early result with t upto 5 years (without r and q yet): Code: S=100.000 K=100.000 s=0.300 t=0.100 --> pp=0.618 pm=0.382 C=3.729 BSM_C=3.783 diff%=-1.44 S=100.000 K=100.000 s=0.300 t=0.200 --> pp=0.618 pm=0.382 C=5.273 BSM_C=5.348 diff%=-1.41 S=100.000 K=100.000 s=0.300 t=0.300 --> pp=0.618 pm=0.382 C=6.458 BSM_C=6.548 diff%=-1.37 S=100.000 K=100.000 s=0.300 t=0.400 --> pp=0.618 pm=0.382 C=7.457 BSM_C=7.558 diff%=-1.33 S=100.000 K=100.000 s=0.300 t=0.500 --> pp=0.618 pm=0.382 C=8.338 BSM_C=8.447 diff%=-1.30 S=100.000 K=100.000 s=0.300 t=0.600 --> pp=0.618 pm=0.382 C=9.133 BSM_C=9.250 diff%=-1.26 S=100.000 K=100.000 s=0.300 t=0.700 --> pp=0.618 pm=0.382 C=9.865 BSM_C=9.987 diff%=-1.22 S=100.000 K=100.000 s=0.300 t=0.800 --> pp=0.618 pm=0.382 C=10.546 BSM_C=10.673 diff%=-1.18 S=100.000 K=100.000 s=0.300 t=0.900 --> pp=0.618 pm=0.382 C=11.186 BSM_C=11.316 diff%=-1.15 S=100.000 K=100.000 s=0.300 t=1.000 --> pp=0.618 pm=0.382 C=11.791 BSM_C=11.924 diff%=-1.11 S=100.000 K=100.000 s=0.300 t=1.100 --> pp=0.618 pm=0.382 C=12.367 BSM_C=12.501 diff%=-1.07 S=100.000 K=100.000 s=0.300 t=1.200 --> pp=0.618 pm=0.382 C=12.917 BSM_C=13.052 diff%=-1.04 S=100.000 K=100.000 s=0.300 t=1.300 --> pp=0.618 pm=0.382 C=13.444 BSM_C=13.580 diff%=-1.00 S=100.000 K=100.000 s=0.300 t=1.400 --> pp=0.618 pm=0.382 C=13.951 BSM_C=14.087 diff%=-0.96 S=100.000 K=100.000 s=0.300 t=1.500 --> pp=0.618 pm=0.382 C=14.441 BSM_C=14.576 diff%=-0.93 S=100.000 K=100.000 s=0.300 t=1.600 --> pp=0.618 pm=0.382 C=14.915 BSM_C=15.048 diff%=-0.89 S=100.000 K=100.000 s=0.300 t=1.700 --> pp=0.618 pm=0.382 C=15.374 BSM_C=15.506 diff%=-0.85 S=100.000 K=100.000 s=0.300 t=1.800 --> pp=0.618 pm=0.382 C=15.819 BSM_C=15.949 diff%=-0.81 S=100.000 K=100.000 s=0.300 t=1.900 --> pp=0.618 pm=0.382 C=16.253 BSM_C=16.380 diff%=-0.78 S=100.000 K=100.000 s=0.300 t=2.000 --> pp=0.618 pm=0.382 C=16.675 BSM_C=16.800 diff%=-0.74 S=100.000 K=100.000 s=0.300 t=2.100 --> pp=0.618 pm=0.382 C=17.087 BSM_C=17.208 diff%=-0.70 S=100.000 K=100.000 s=0.300 t=2.200 --> pp=0.618 pm=0.382 C=17.489 BSM_C=17.606 diff%=-0.67 S=100.000 K=100.000 s=0.300 t=2.300 --> pp=0.618 pm=0.382 C=17.882 BSM_C=17.995 diff%=-0.63 S=100.000 K=100.000 s=0.300 t=2.400 --> pp=0.618 pm=0.382 C=18.267 BSM_C=18.376 diff%=-0.59 S=100.000 K=100.000 s=0.300 t=2.500 --> pp=0.618 pm=0.382 C=18.643 BSM_C=18.748 diff%=-0.56 S=100.000 K=100.000 s=0.300 t=2.600 --> pp=0.618 pm=0.382 C=19.013 BSM_C=19.112 diff%=-0.52 S=100.000 K=100.000 s=0.300 t=2.700 --> pp=0.618 pm=0.382 C=19.375 BSM_C=19.469 diff%=-0.48 S=100.000 K=100.000 s=0.300 t=2.800 --> pp=0.618 pm=0.382 C=19.730 BSM_C=19.818 diff%=-0.44 S=100.000 K=100.000 s=0.300 t=2.900 --> pp=0.618 pm=0.382 C=20.080 BSM_C=20.162 diff%=-0.41 S=100.000 K=100.000 s=0.300 t=3.000 --> pp=0.618 pm=0.382 C=20.423 BSM_C=20.499 diff%=-0.37 S=100.000 K=100.000 s=0.300 t=3.100 --> pp=0.618 pm=0.382 C=20.760 BSM_C=20.830 diff%=-0.33 S=100.000 K=100.000 s=0.300 t=3.200 --> pp=0.618 pm=0.382 C=21.093 BSM_C=21.155 diff%=-0.30 S=100.000 K=100.000 s=0.300 t=3.300 --> pp=0.618 pm=0.382 C=21.420 BSM_C=21.475 diff%=-0.26 S=100.000 K=100.000 s=0.300 t=3.400 --> pp=0.618 pm=0.382 C=21.742 BSM_C=21.790 diff%=-0.22 S=100.000 K=100.000 s=0.300 t=3.500 --> pp=0.618 pm=0.382 C=22.059 BSM_C=22.100 diff%=-0.19 S=100.000 K=100.000 s=0.300 t=3.600 --> pp=0.618 pm=0.382 C=22.372 BSM_C=22.405 diff%=-0.15 S=100.000 K=100.000 s=0.300 t=3.700 --> pp=0.618 pm=0.382 C=22.681 BSM_C=22.706 diff%=-0.11 S=100.000 K=100.000 s=0.300 t=3.800 --> pp=0.618 pm=0.382 C=22.985 BSM_C=23.002 diff%=-0.07 S=100.000 K=100.000 s=0.300 t=3.900 --> pp=0.618 pm=0.382 C=23.286 BSM_C=23.294 diff%=-0.04 S=100.000 K=100.000 s=0.300 t=4.000 --> pp=0.618 pm=0.382 C=23.582 BSM_C=23.582 diff%=0.00 S=100.000 K=100.000 s=0.300 t=4.100 --> pp=0.618 pm=0.382 C=23.875 BSM_C=23.866 diff%=0.04 S=100.000 K=100.000 s=0.300 t=4.200 --> pp=0.618 pm=0.382 C=24.165 BSM_C=24.147 diff%=0.07 S=100.000 K=100.000 s=0.300 t=4.300 --> pp=0.618 pm=0.382 C=24.451 BSM_C=24.423 diff%=0.11 S=100.000 K=100.000 s=0.300 t=4.400 --> pp=0.618 pm=0.382 C=24.733 BSM_C=24.697 diff%=0.15 S=100.000 K=100.000 s=0.300 t=4.500 --> pp=0.618 pm=0.382 C=25.013 BSM_C=24.967 diff%=0.19 S=100.000 K=100.000 s=0.300 t=4.600 --> pp=0.618 pm=0.382 C=25.289 BSM_C=25.233 diff%=0.22 S=100.000 K=100.000 s=0.300 t=4.700 --> pp=0.618 pm=0.382 C=25.563 BSM_C=25.496 diff%=0.26 S=100.000 K=100.000 s=0.300 t=4.800 --> pp=0.618 pm=0.382 C=25.833 BSM_C=25.757 diff%=0.30 S=100.000 K=100.000 s=0.300 t=4.900 --> pp=0.618 pm=0.382 C=26.101 BSM_C=26.014 diff%=0.33 S=100.000 K=100.000 s=0.300 t=5.000 --> pp=0.618 pm=0.382 C=26.366 BSM_C=26.268 diff%=0.37 ...
I now have created my own realistic Delta Greek called "MyDelta": Code: S=100.00 K=100.00 s=3.0 t=1.0 r=0.0 q=0.0 : C: Value=86.638560 Delta=0.933193 MyDelta=0.500000 Gamma=0.000432 Vega=0.129518 Theta=-0.053226 Rho=0.066807 ... P: Value=86.638560 Delta=-0.066807 MyDelta=-0.500000 Gamma=0.000432 Vega=0.129518 Theta=-0.053226 Rho=-0.933193 ... DBG: S @ +1SD=2008.55 S @ 0SD=100.00 S @ -1SD=4.98 p_S_reaching_K(ie. ITM)=0.50 p_rest=0.50, expected_St(z=0 = 0SD = p=0.5)=100.00
Well, what is your interpretation of delta? The reason why delta exists is to let a trader know how much stock to hold as a hedge- but please, do continue as this is exceedingly entertaining
Hey, @thecoder , wanna really get your brain farting? Delta can rise above 100% (but I think this applies only to fowards, not options) lol
Come on, for a single option this never can be true. Otherwise give the params where this can happen. Maybe you mean the delta in delta hedging where the single deltas are cumulated.
This might have been the intention, but in fact it's IMO simply wrong as the few examples with high volatility have clearly demonstrated. If I were in a situation to use the delta, for example as probability for expiring ITM or in delta hedging, I would use my own delta which behaves mathematically correct, IMO. Cf. previous posting with an example for "MyDelta".
The problem is your assumptions about delta are completely wrong. Delta is NOT just a measure of the probability the option expiring in the money. The delta value is also determined by how much the option will finish ITM if and when it does (conditional probability). So in your extreme example of 300% IV, the much higher call delta (than the put) reflects the extreme asymmetric values the call could be worth vs the put if it were to expire ITM. The put's potential value is limited by the zero bound...while the call's expected value, if it expires ITM, increases with higher vol and/or more DTE. The delta of the call reflects this higher expected value if it expires ITM.