If you are refering to the way I can automate trading algorithms, yes I figured it out, long time ago If you are refering to the fact that I have a printing money machine, no, that's not something I have. My algos don't fail, they are robustly not making any money.
AI will kill retail trading Retail trading will kill AI ? You've done something unusual here. Are you doing fine @maxinger ?
Code: using System; using System.Collections.Generic; using System.Linq; using PowerLanguage.Function; namespace PowerLanguage.Strategy { [IOGMode(IOGMode.Enabled)] public class ctest1: SignalObject { #region Strategy Parameters [Input] public int LookbackWindow { get; set; } [Input] public double SignalThreshold { get; set; } [Input] public int PositionSize { get; set; } [Input] public double TransactionCost { get; set; } [Input] public double RiskFactor { get; set; } [Input] public bool EnableQuantum { get; set; } [Input] public bool EnableBacterial { get; set; } [Input] public bool EnableFractional { get; set; } #endregion #region Private Variables private List < double > priceHistory; private List < double > signalHistory; private List < double > velocityHistory; private List < double > accelerationHistory; private List < double > jerkHistory; private List < double > snapHistory; private double currentCompositeSignal; private double previousCompositeSignal; private int currentPosition; // Performance tracking private double totalPnL; private double maxDrawdown; private double peakEquity; private int totalTrades; private int winningTrades; // Risk management private double shortTermVol; private double longTermVol; private double currentDrawdown; // Orders interface - separate entry and exit orders for frequent trading private IOrderMarket m_BuyOrder; private IOrderMarket m_SellOrder; private IOrderMarket m_ExitLongOrder; private IOrderMarket m_ExitShortOrder; // Position tracking for frequent trading private int barsInPosition; private int maxHoldingPeriod; private int minHoldingPeriod; #endregion #region Constructor public ctest1(object _ctx): base(_ctx) { // AGGRESSIVE SETTINGS FOR GUARANTEED LONG/SHORT TRADES LookbackWindow = 10; // Very short for quick mean reversion SignalThreshold = 0.005; // Extremely sensitive threshold PositionSize = 1; TransactionCost = 0.001; RiskFactor = 1.0; EnableQuantum = false; // Disable complex signals initially EnableBacterial = false; // Use only simple mean reversion EnableFractional = false; // Trading frequency controls maxHoldingPeriod = 12; // Shorter holding period minHoldingPeriod = 3; // Shorter minimum hold } #endregion #region Initialization protected override void Create() { // Initialize collections priceHistory = new List < double > (); signalHistory = new List < double > (); velocityHistory = new List < double > (); accelerationHistory = new List < double > (); jerkHistory = new List < double > (); snapHistory = new List < double > (); // Initialize variables currentCompositeSignal = 0; previousCompositeSignal = 0; currentPosition = 0; totalPnL = 0; maxDrawdown = 0; peakEquity = 0; totalTrades = 0; winningTrades = 0; // Initialize order interface - all 4 order types for active trading m_BuyOrder = OrderCreator.MarketNextBar(new SOrderParameters(Contracts.Default, EOrderAction.Buy)); m_SellOrder = OrderCreator.MarketNextBar(new SOrderParameters(Contracts.Default, EOrderAction.SellShort)); m_ExitLongOrder = OrderCreator.MarketNextBar(new SOrderParameters(Contracts.Default, EOrderAction.Sell)); m_ExitShortOrder = OrderCreator.MarketNextBar(new SOrderParameters(Contracts.Default, EOrderAction.BuyToCover)); // Initialize position tracking barsInPosition = 0; } #endregion #region Main Strategy Logic protected override void CalcBar() { // Update price history UpdatePriceHistory(); // Need minimum bars for calculations - optimized for INTC if (priceHistory.Count < 5) // Very low minimum for volatile stock return; // Calculate velocity derivatives CalculateVelocityDerivatives(); // Generate composite signal currentCompositeSignal = GenerateCompositeSignal(); // Apply risk management double riskAdjustedSignal = ApplyRiskManagement(currentCompositeSignal); // Generate trading decision int tradingSignal = GenerateTradingDecision(riskAdjustedSignal); // Execute trades ExecuteTrade(tradingSignal); // Update performance metrics UpdatePerformanceMetrics(); // Store signal for next bar previousCompositeSignal = currentCompositeSignal; signalHistory.Add(currentCompositeSignal); // Maintain history size MaintainHistorySize(); // Output debug information OutputDebugInfo(tradingSignal, riskAdjustedSignal); } #endregion #region Core Algorithm Components private void UpdatePriceHistory() { priceHistory.Add(Bars.Close[0]); // Maintain maximum history size if (priceHistory.Count > LookbackWindow * 2) { priceHistory.RemoveAt(0); } } private void CalculateVelocityDerivatives() { if (priceHistory.Count < 5) return; var recentPrices = TakeLast(priceHistory, Math.Min(priceHistory.Count, LookbackWindow)); // Calculate velocity (1st derivative) var velocity = CalculateGradient(recentPrices); if (velocity.Count > 0) velocityHistory.Add(velocity[velocity.Count - 1]); // Calculate acceleration (2nd derivative) if (velocityHistory.Count >= 2) { var acceleration = CalculateGradient(TakeLast(velocityHistory, Math.Min(velocityHistory.Count, 50))); if (acceleration.Count > 0) accelerationHistory.Add(acceleration[acceleration.Count - 1]); } // Calculate jerk (3rd derivative) if (accelerationHistory.Count >= 2) { var jerk = CalculateGradient(TakeLast(accelerationHistory, Math.Min(accelerationHistory.Count, 30))); if (jerk.Count > 0) jerkHistory.Add(jerk[jerk.Count - 1]); } // Calculate snap (4th derivative) if (jerkHistory.Count >= 2) { var snap = CalculateGradient(TakeLast(jerkHistory, Math.Min(jerkHistory.Count, 20))); if (snap.Count > 0) snapHistory.Add(snap[snap.Count - 1]); } } private List < double > CalculateGradient(List < double > data) { var gradient = new List < double > (); if (data.Count < 2) return gradient; // Forward difference for first point gradient.Add(data[1] - data[0]); // Central difference for middle points for (int i = 1; i < data.Count - 1; i++) { gradient.Add((data[i + 1] - data[i - 1]) / 2.0); } // Backward difference for last point gradient.Add(data[data.Count - 1] - data[data.Count - 2]); return gradient; } private double GenerateCompositeSignal() { var recentPrices = TakeLast(priceHistory, Math.Min(priceHistory.Count, LookbackWindow)); if (recentPrices.Count < 5) return 0; // SIMPLE MEAN REVERSION SIGNAL - This will fix the long/short imbalance double currentPrice = recentPrices[recentPrices.Count - 1]; double meanPrice = Average(recentPrices); // Primary mean reversion signal: // POSITIVE when price > mean (should SHORT) // NEGATIVE when price < mean (should LONG) double primarySignal = (currentPrice - meanPrice) / meanPrice; // Scale the signal to make it more sensitive primarySignal = primarySignal * 10; // Amplify for better sensitivity // Debug output to see signal components if (Bars.CurrentBar % 5 == 0) { Output.WriteLine($"SIGNAL DEBUG - Price: {currentPrice:F2}, Mean: {meanPrice:F2}, " + $ "Primary: {primarySignal:F4}"); } return primarySignal; } #endregion #region Risk Management private double ApplyRiskManagement(double signal) { // Minimal risk management for INTC - just pass through the signal return signal * RiskFactor; } #endregion #region Trading Execution private int GenerateTradingDecision(double riskAdjustedSignal) { // FORCE EXIT after maximum holding period if (currentPosition != 0 && barsInPosition >= maxHoldingPeriod) { Output.WriteLine($"FORCED EXIT after {barsInPosition} days in position"); return currentPosition > 0 ? -2 : 2; // Force exit long or short } // FORCE EXIT if signal reverses strongly after minimum hold period if (currentPosition != 0 && barsInPosition >= minHoldingPeriod) { if (currentPosition > 0 && riskAdjustedSignal > SignalThreshold * 2) // Long position, strong sell signal { Output.WriteLine($"SIGNAL REVERSAL EXIT after {barsInPosition} days - Long to Exit"); return -2; // Exit long } if (currentPosition < 0 && riskAdjustedSignal < -SignalThreshold * 2) // Short position, strong buy signal { Output.WriteLine($"SIGNAL REVERSAL EXIT after {barsInPosition} days - Short to Exit"); return 2; // Exit short } } // NEW ENTRY SIGNALS (only when flat) if (currentPosition == 0) { // MEAN REVERSION LOGIC: // Buy when signal is NEGATIVE (price below mean - expect reversion UP) // Sell when signal is POSITIVE (price above mean - expect reversion DOWN) if (riskAdjustedSignal < -SignalThreshold) { Output.WriteLine($"NEW LONG ENTRY - Price Below Mean, Signal: {riskAdjustedSignal:F4}"); return 1; // Long entry - buy the dip } else if (riskAdjustedSignal > SignalThreshold) { Output.WriteLine($"NEW SHORT ENTRY - Price Above Mean, Signal: {riskAdjustedSignal:F4}"); return -1; // Short entry - sell the spike } } return 0; // Hold current position } private void ExecuteTrade(int tradingSignal) { // Update bars in position counter if (currentPosition != 0) { barsInPosition++; } // Execute based on trading signal switch (tradingSignal) { case 1: // Buy (Long Entry) if (currentPosition <= 0) { m_BuyOrder.Send(); currentPosition = 1; barsInPosition = 0; // Reset counter totalTrades++; Output.WriteLine($"*** LONG ENTRY at Bar {Bars.CurrentBar}, Price: {Bars.Close[0]:F2} ***"); } break; case -1: // Sell Short (Short Entry) if (currentPosition >= 0) { m_SellOrder.Send(); currentPosition = -1; barsInPosition = 0; // Reset counter totalTrades++; Output.WriteLine($"*** SHORT ENTRY at Bar {Bars.CurrentBar}, Price: {Bars.Close[0]:F2} ***"); } break; case -2: // Exit Long Position if (currentPosition > 0) { m_ExitLongOrder.Send(); Output.WriteLine($"*** EXIT LONG at Bar {Bars.CurrentBar}, Price: {Bars.Close[0]:F2}, Held {barsInPosition} days ***"); currentPosition = 0; barsInPosition = 0; totalTrades++; } break; case 2: // Exit Short Position if (currentPosition < 0) { m_ExitShortOrder.Send(); Output.WriteLine($"*** EXIT SHORT at Bar {Bars.CurrentBar}, Price: {Bars.Close[0]:F2}, Held {barsInPosition} days ***"); currentPosition = 0; barsInPosition = 0; totalTrades++; } break; } } #endregion #region Performance Tracking private void UpdatePerformanceMetrics() { // Basic performance tracking if (Bars.CurrentBar > 1) { double currentPrice = Bars.Close[0]; double previousPrice = Bars.Close[1]; // Simple equity calculation double priceChange = currentPrice - previousPrice; if (priceChange > peakEquity) { peakEquity = priceChange; } double drawdown = peakEquity > 0 ? (priceChange - peakEquity) / peakEquity : 0; if (drawdown < maxDrawdown) { maxDrawdown = drawdown; } } } #endregion #region Utility Functions private double CalculateStandardDeviation(List < double > values) { if (values.Count < 2) return 0; double mean = Average(values); double sumSquares = 0; for (int i = 0; i < values.Count; i++) { sumSquares += Math.Pow(values - mean, 2); } return Math.Sqrt(sumSquares / (values.Count - 1)); } private double Average(List < double > values) { if (values.Count == 0) return 0; double sum = 0; for (int i = 0; i < values.Count; i++) { sum += values; } return sum / values.Count; } private double MaxValue(List < double > values) { if (values.Count == 0) return 0; double max = values[0]; for (int i = 1; i < values.Count; i++) { if (values > max) max = values; } return max; } private double MinValue(List < double > values) { if (values.Count == 0) return 0; double min = values[0]; for (int i = 1; i < values.Count; i++) { if (values < min) min = values; } return min; } private List < double > TakeLast(List < double > source, int count) { if (source.Count <= count) return new List < double > (source); var result = new List < double > (); for (int i = source.Count - count; i < source.Count; i++) { result.Add(source); } return result; } private void MaintainHistorySize() { const int maxHistorySize = 100; // Reduced size if (velocityHistory.Count > maxHistorySize) velocityHistory.RemoveAt(0); if (accelerationHistory.Count > maxHistorySize) accelerationHistory.RemoveAt(0); if (jerkHistory.Count > maxHistorySize) jerkHistory.RemoveAt(0); if (snapHistory.Count > maxHistorySize) snapHistory.RemoveAt(0); if (signalHistory.Count > maxHistorySize) signalHistory.RemoveAt(0); } private void OutputDebugInfo(int tradingSignal, double riskAdjustedSignal) { // Output EVERY bar to debug the signal issue if (Bars.CurrentBar % 1 == 0) // Every single bar { string positionStatus = currentPosition > 0 ? $ "LONG ({barsInPosition} days)" : currentPosition < 0 ? $ "SHORT ({barsInPosition} days)" : "FLAT"; double currentPrice = Bars.Close[0]; double meanPrice = priceHistory.Count > 5 ? Average(TakeLast(priceHistory, Math.Min(LookbackWindow, priceHistory.Count))) : currentPrice; string priceVsMean = currentPrice > meanPrice ? "ABOVE" : "BELOW"; double priceDiff = ((currentPrice - meanPrice) / meanPrice) * 100; Output.WriteLine($"Bar {Bars.CurrentBar}: Price {currentPrice:F2} ({priceVsMean} mean by {priceDiff:F2}%), " + $ "Signal {riskAdjustedSignal:F6}, Threshold ±{SignalThreshold:F6}, {GetActionName(tradingSignal)}, {positionStatus}"); // Show exactly what should happen if (currentPosition == 0) { if (riskAdjustedSignal < -SignalThreshold) { Output.WriteLine($" *** LONG TRIGGER: Signal {riskAdjustedSignal:F6} < -{SignalThreshold:F6} ***"); } else if (riskAdjustedSignal > SignalThreshold) { Output.WriteLine($" *** SHORT TRIGGER: Signal {riskAdjustedSignal:F6} > {SignalThreshold:F6} ***"); } else { Output.WriteLine($" No trigger: Signal {riskAdjustedSignal:F6} between ±{SignalThreshold:F6}"); } } } } private string GetActionName(int signal) { switch (signal) { case 1: return "LONG ENTRY"; case -1: return "SHORT ENTRY"; case 2: return "EXIT SHORT"; case -2: return "EXIT LONG"; default: return "HOLD"; } } #endregion } }
Analysis by Sonnet 4 Updated Analysis: C# Trading Strategy with Critical Bug Detection v1.1.0 CRITICAL BUGS DISCOVERED 1. Index Access Syntax Errors (Runtime Failures) Location: All utility functions (Average, MaxValue, MinValue, TakeLast, CalculateStandardDeviation) Bug: Using values instead of values [*]Impact: Code will not compile or will throw runtime exceptions [*]Fix Required: Replace all instances with proper bracket notation 2. Mathematical Operations Compromised All statistical calculations are broken due to indexing errors Mean reversion signal generation will fail Performance metrics calculations are unreliable 3. Logic and Performance Issues Excessive debug output every bar (performance impact) No error handling or null checks Hardcoded magic numbers throughout Mixed responsibilities in single class Strategy Overview (When Fixed) This is a sophisticated mean reversion trading system with: Core Logic: Price deviation from rolling average (10-bar lookback) Signal Sensitivity: Ultra-high (0.5% threshold) for frequent trading Position Management: Active long/short switching with time-based exits Mathematical Foundation: Multi-derivative analysis (velocity → acceleration → jerk → snap) Risk Controls: Forced exits after 12 bars, signal reversal detection Required Fixes Immediate Priority: Fix all array indexing syntax errors Add null checks and error handling Reduce debug output frequency Validate all mathematical calculations Architecture Improvements: Separate signal generation logic Extract risk management module Add configuration validation Implement proper error recovery The strategy concept is sound but requires significant bug fixes before deployment. The mean reversion approach with multi-derivative analysis could be effective for volatile instruments once the implementation issues are resolved.
https://www.quora.com/How-can-you-e...tives-such-as-jerk-and-snap-with-applications Higher-order derivatives extend the concept of velocity and acceleration to describe more complex motion. Here's a breakdown of these derivatives, focusing on jerk and snap, along with their applications: 1. Basic Definitions Position (s): The location of an object at a given time. Velocity (v): The first derivative of position with respect to time: v=dsdt" role="presentation">v=dsdt Acceleration (a): The second derivative of position, or the first derivative of velocity: a=dvdt=d2sdt2" role="presentation">a=dvdt=d2sdt2 Jerk (j): The third derivative of position, or the first derivative of acceleration: j=dadt=d3sdt3" role="presentation">j=dadt=d3sdt3 Snap (s): The fourth derivative of position, or the first derivative of jerk: s=djdt=d4sdt4" role="presentation">s=djdt=d4sdt4 2. Applications Jerk Jerk quantifies the change in acceleration. It is particularly important in various fields: Automotive Engineering: Jerk is critical in designing smoother ride experiences. Reducing jerk can enhance passenger comfort, especially in vehicles that accelerate or decelerate quickly. Robotics: In robotic motion planning, minimizing jerk can lead to smoother and more precise movements. This is crucial for applications like robotic surgery, where precision is vital. Animation and Simulations: In computer graphics, controlling jerk can lead to more realistic motion, preventing abrupt changes that can look unnatural. Snap Snap is less commonly discussed but has important applications: Spacecraft Trajectories: In astrodynamics, snap can be used to optimize trajectories for spacecraft. By minimizing snap, engineers can reduce the stress on the spacecraft during maneuvers, leading to longer operational lifespans. Advanced Robotics: For high-speed robotic arms or drones, controlling snap can improve performance by ensuring smooth transitions between different states of motion. Vehicle Dynamics: In the design of high-performance vehicles, understanding and controlling snap can help in optimizing handling characteristics during extreme maneuvers. 3. Summary Higher-order derivatives like jerk and snap provide valuable insights into motion dynamics, especially in contexts where smoothness and precision are critical. By analyzing these derivatives, engineers and designers can enhance performance, safety, and comfort in various applications, from transportation to robotics and beyond.