Formulas for Payoff at Expiry

Discussion in 'Options' started by Quanto, Mar 9, 2024.

  1. Quanto

    Quanto

    Found a bug in the table in the OP. Here's the fix:
    LongStock and ShortStock: the PnL(S) formula must of course be "S - S0", since it's about the PnL, not the price.
     
    #11     Mar 10, 2024
  2. Quanto

    Quanto

    Sorry, I messed it up :-(
    The above one is not necessary.
    But the function named "PnL(S)" needs to be renamed to "Payoff(S)" !!!
    Here's an updated version (v1.1) of the table, with some more info:
    Code:
    Formulas for Payoff at Expiry  (v1.1)
    (Black-Scholes not required at/for expiry)
    
    Abbrevations:
      S         Stock Price
      S0        Initial Stock Price
      Pr0       Initial Option Premium (ie. the Option Price)
      K         Option Strike
      BEP       Break/Even Point (the stock price at which PnL is 0)
      PnL(S)    The formula for computing PnL for any S
      Infinity  means "unlimited"
    
                    Type       NetPr       MinPnL       MaxPnL        BEP         ProfitZone     Payoff(S)
    ----------------------------------------------------------------------------------------------------------------------------------------
    LongStock       Bullish    -S0         -S0          +Infinity     S0          BEP.right      S
    
    ShortStock      Bearish     S0         -Infinity     S0           S0          BEP.left       S
    
    LongCall        Bullish    -Pr0        -Pr0         +Infinity     K + Pr0     BEP.right      max(S - K - Pr0, -Pr0)
                                                                    Equal alternative formula:   max(S - K, 0) - Pr0        see https://www.macroption.com/call-option-payoff/
    
    ShortCall       Bearish     Pr0        -Infinity     Pr0          K + Pr0     BEP.left       min(K - S + Pr0,  Pr0)
                                                                    Equal alternative formula:   Pr0 - max(0, S - K)        see https://www.macroption.com/short-call-payoff/
    
    LongPut         Bearish    -Pr0        -Pr0          K - Pr0      K - Pr0     BEP.left       max(K - S - Pr0, -Pr0)
                                                                    Equal alternative formula:   max(K - S, 0) - Pr0        see https://www.macroption.com/put-option-payoff
    
    ShortPut        Bullish     Pr0        -K + Pr0      Pr0          K - Pr0     BEP.right      min(S - K + Pr0,  Pr0)
                                                                    Equal alternative formula:   Pr0 - max(0, K - S)        see https://www.macroption.com/short-put-payoff/
    
    CoveredCall     Bullish    -S0 + Pr0    NetPr        K - Pr0      S0 - Pr0    BEP.right      S < 0.0 ? MinPnL : S > K ? MaxPnL : MinPnL + S
    (= LS + SC)
    
    CashSecuredPut  Bullish    -K  + Pr0    NetPr        K - Pr0      K  - Pr0    BEP.right      S < 0.0 ? MinPnL : S > K ? MaxPnL : MinPnL + S
    (= SP + Cash)
    
    
    
     
    Last edited: Mar 10, 2024
    #12     Mar 10, 2024
  3. newwurldmn

    newwurldmn

    If you are using any closed form formula to determine the payoff at options at expiry you are missing some serious risk parameters. It’s the difference between a profit and a loss.
     
    #13     Mar 10, 2024
  4. Quanto

    Quanto

    @newwurldmn, FYI: you have me on blocking, maybe you wrongly think I'm blocking you :)
    Maybe you should unblock me for a better, constructive, communication :)
    Hmm. Can you tell some more?
     
    #14     Mar 10, 2024
  5. ondafringe

    ondafringe

    04-Q.PNG
    @Quanto

    You are a fool. He beat you at your own game. lol
     
    #15     Mar 10, 2024
  6. Quanto

    Quanto

    @newwurldmn, you seem not to know what the payoff function is at all.
    You seem to believe that it's about the expected or most probable outcome of a real trade.
    Nope, it's not! :)
    It's a function that computes the payoff for any given stock price at expiry.
    FYI: at expiry only the stock price alone determines about the outcome of a trade, ie. the payoff, nothing else, not even IV anymore :)
    Man, how can you not know these basic facts/properties of options? :)
     
    Last edited: Mar 10, 2024
    #16     Mar 10, 2024
  7. Quanto

    Quanto

    New update (v1.2a):

    Code:
    
    Formulas for Payoff at Expiry    (v1.2a)
    (Black-Scholes not required at/for expiry)
    
    Strategy              Type     Condition    NetPr             D/C      MinPnL               MaxPnL              BEP         ProfitZone      Payoff(S)
    ---------------------------------------------------------------------------------------------------------------------------------------------------------------------
    LongStock (LS)        Bullish               -S0              Debit     NetPr                +Infinity           S0          BEP.right       S
    
    ShortStock (SS)       Bearish                S0              Credit    -Infinity            NetPr               S0          BEP.left        S
    
    LongCall (LC)         Bullish               -Pr0             Debit     NetPr                +Infinity           K - NetPr   BEP.right       max(S - K - Pr0, -Pr0)
                                                                                                                           Equal alternative:   max(S - K, 0.0) - Pr0        see https://www.macroption.com/call-option-payoff/
    
    ShortCall (SC)        Bearish                Pr0             Credit    -Infinity            NetPr               K + NetPr   BEP.left        min(K - S + Pr0,  Pr0)
                                                                                                                           Equal alternative:   Pr0 - max(0.0, S - K)        see https://www.macroption.com/short-call-payoff/
    
    LongPut (LP)          Bearish               -Pr0             Debit     NetPr                K - NetPr           K - NetPr   BEP.left        max(K - S - Pr0, -Pr0)
                                                                                                                           Equal alternative:   max(K - S, 0.0) - Pr0        see https://www.macroption.com/put-option-payoff
    
    ShortPut (SP)         Bullish                Pr0             Credit    -K + NetPr           NetPr               K - NetPr   BEP.right       min(S - K + Pr0,  Pr0)
                                                                                                                           Equal alternative:   Pr0 - max(0.0, K - S)        see https://www.macroption.com/short-put-payoff/
    
    CoveredCall (CC)      Bullish               -S0 + Pr0        Debit     NetPr                K + NetPr           S0 - Pr0    BEP.right       S < 0.0 ? MinPnL : S > K ? MaxPnL : MinPnL + S
    (= LS + SC)
    
    CashSecuredPut (CSP)  Bullish               -K  + Pr0        Debit     NetPr                K + NetPr           K  - Pr0    BEP.right       S < 0.0 ? MinPnL : S > K ? MaxPnL : MinPnL + S
    (= SP + Cash)
    
    CallSpread (CS.D)     Bullish   L.K < S.K   -L.Pr0 + S.Pr0   Debit     NetPr                S.K - L.K + NetPr
    (= LC + SC)
    
    CallSpread (CS.C)     Bearish   L.K > S.K   -L.Pr0 + S.Pr0   Credit    S.K - L.K + NetPr    NetPr
    (= LC + SC)
    
    PutSpread (PS.C)      Bullish   L.K < S.K   -L.Pr0 + S.Pr0   Credit    L.K - S.K + NetPr    NetPr
    (= LP + SP)
    
    PutSpread (PS.D)      Bearish   L.K > S.K   -L.Pr0 + S.Pr0   Debit     NetPr                L.K - S.K + NetPr
    (= LP + SP)
    
    
    
    History:
    v1.2a:
      - added CallSpread, PutSpread     (unfinished yet)
      - fixed CC.MaxPnL, CSP.MaxPnL
    
    Legend:
      S          Stock Price
      S0         Initial Stock Price
      Pr0        Initial Option Premium (ie. the Option Price)
      K          Option Strike
      BEP        Break/Even Point (the stock price at which PnL becomes 0)
      Payoff(S)  The formula for computing PnL for any S, for the expiry date
      Infinity   means "unlimited"
      L.K        Strike of Long leg
      S.K        Strike of Short leg
    
    Let me know if you spot an error.
    
    
     
    Last edited: Mar 12, 2024
    #17     Mar 12, 2024