Increases in CO2 - Causes Cooling

Discussion in 'Politics' started by jem, Jul 12, 2014.

  1. [​IMG]
     
    #1131     Oct 12, 2014
  2. Lucrum

    Lucrum


     
    #1132     Oct 12, 2014
  3. jem

    jem

    overall co2 is at a very low level. some think the earth is starving for co2

    ][​IMG][/quote]
     
    #1133     Oct 12, 2014
  4. [​IMG]
     
    #1134     Oct 12, 2014
  5. jem

    jem

    there were ice bergs hitting florida 21000 years ago.
    man made co2 must have rally warmed us up. huh?


    http://wattsupwiththat.com/2014/10/13/icebergs-once-drifted-to-florida/

    From the University of Massachusetts at Amherst and the department of melted evidence, comes this interesting story about the last ice age.

    Icebergs once drifted to Florida, new climate model suggests

    The first study to show that when the large ice sheet over North America known as the Laurentide ice sheet began to melt, icebergs calved into the sea around Hudson Bay and would have periodically drifted along the east coast as far south as Miami

    AMHERST, Mass. – Using a first-of-its-kind, high-resolution numerical model to describe ocean circulation during the last ice age about 21,000 year ago, oceanographer Alan Condron of the University of Massachusetts Amherst has shown that icebergs and meltwater from the North American ice sheet would have regularly reached South Carolina and even southern Florida. The models are supported by the discovery of iceberg scour marks on the sea floor along the entire continental shelf.
     
    #1135     Oct 13, 2014
  6. jem

    jem

    antarctic glacier melting caused by underground volcano...

    http://wattsupwiththat.com/2014/10/...er-likely-melting-from-geothermal-heat-below/

    Abstract
    Thwaites Glacier has one of the largest glacial catchments in West Antarctica. The future stability of Thwaites Glacier’s catchment is of great concern, as this part of the West Antarctic Ice Sheet has recently been hypothesized to already be en route towards collapse. Although an oceanic trigger is thought to be responsible for current change at the grounding line of Thwaites Glacier, in order to determine the effects of this coastal change further in the interior of the West Antarctic Ice Sheet it is essential to also better constrain basal conditions that control the dynamics of fast glacial flow within the catchment itself. One major contributor to fast glacial flow is the presence of subglacial water, the production of which is a result of both glaciological shear heating and geothermal heat flux. The primary goal of our study is to investigate the crustal thickness beneath Thwaites Glacier, which is an important contributor to regional-scale geothermal heat flux patterns. Crustal structure is an indicator of past tectonic events and hence provides a geophysical proxy for the thermal status of the crust and mantle. Terrain-corrected Bouguer gravity disturbances are used here to estimate depths to the Moho and mid-crustal boundary. The thin continental crust we reveal beneath Thwaites Glacier supports the hypothesis that the West Antarctic Rift System underlies the region and is expressed topographically as the Byrd Subglacial Basin. This rifted crust is of similar thickness to that calculated from airborne gravity data beneath neighboring Pine Island Glacier, and is more extended than crust in the adjacent Siple Coast sector of the Ross Sea Embayment. A zone of thinner crust is also identified near the area’s subaerial volcanoes lending support to a recent interpretation predicting that this part of Marie Byrd Land is a major volcanic dome, likely within the West Antarctic Rift System itself. Near-zero Bouguer gravity disturbances for the subglacial highlands and subaerial volcanoes indicate the absence of supporting crustal roots, suggesting either (1) thermal support from a warm lithosphere or alternatively, and arguably less likely; (2) flexural support of the topography by a cool and rigid lithosphere, or (3) Pratt-like compensation. Although forward modeling of gravity data is non-unique in respect to these alternative possibilities, we prefer the hypothesis that Marie Byrd Land volcanoes are thermally-supported by warmer upper mantle. The presence of such inferred warm upper mantle also suggests regionally elevated geothermal heat flux in this sector of the West Antarctic Rift System and consequently the potential for enhanced meltwater production beneath parts of Thwaites Glacier itself. Our new crustal thickness estimates and geothermal heat flux inferences in the Thwaites Glacier region are significant both for studies of the structure of the broader West Antarctic Rift System and for assessments of geological influences on West Antarctic Ice Sheet dynamics and glacial isostatic adjustment models.

    [​IMG]
    Fig 1 from the paper illustrating West Antarctic region studied in red box

    [​IMG]
    Fig 2. Geothermal heat flux within box in Fig 1.
     
    #1136     Oct 13, 2014
  7. No the ice is not melting because of a volcano.

    This is why the ice is melting...... everywhere.


    [​IMG]
     
    #1137     Oct 13, 2014
  8. jem

    jem

    your team does not even agree with you... fraudcurrents...
    they say the ice is growing in antarctica.



    Modeled Trends in Antarctic Sea Ice Thickness
    Paul R.Holland and NicolasBruneau*
    British Antarctic Survey, Cambridge, United Kingdom

    ClareEnright
    Tyndall Centre for Climate Change Research, University of East Anglia, Norwich, United Kingdom

    MartinLosch
    Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany

    Nathan T.Kurtz
    NASA Goddard Space Science Center, Greenbelt, Maryland

    RonKwok
    Jet Propulsion Laboratory, Pasadena, California






    http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-13-00301.1

    Unlike the rapid sea ice losses reported in the Arctic, satellite observations show an overall increase in Antarctic sea ice concentration over recent decades. However, observations of decadal trends in Antarctic ice thickness, and hence ice volume, do not currently exist. In this study a model of the Southern Ocean and its sea ice, forced by atmospheric reanalyses, is used to assess 1992–2010 trends in ice thickness and volume. The model successfully reproduces observations of mean ice concentration, thickness, and drift, and decadal trends in ice concentration and drift, imparting some confidence in the hindcasted trends in ice thickness. The model suggests that overall Antarctic sea ice volume has increased by approximately 30 km3 yr−1 (0.4% yr−1) as an equal result of areal expansion (20 × 103 km2 yr−1 or 0.2% yr−1) and thickening (1.5 mm yr−1 or 0.2% yr−1). This ice volume increase is an order of magnitude smaller than the Arctic decrease, and about half the size of the increased freshwater supply from the Antarctic Ice Sheet. Similarly to the observed ice concentration trends, the small overall increase in modeled ice volume is actually the residual of much larger opposing regional trends. Thickness changes near the ice edge follow observed concentration changes, with increasing concentration corresponding to increased thickness. Ice thickness increases are also found in the inner pack in the Amundsen and Weddell Seas, where the model suggests that observed ice-drift trends directed toward the coast have caused dynamical thickening in autumn and winter. Modeled changes are predominantly dynamic in origin in the Pacific sector and thermodynamic elsewhere.[/quote][/quote]
     
    #1138     Oct 13, 2014
  9. jem

    jem

    another failed IPCC model. this time methane.

    http://wattsupwiththat.com/2014/10/...-so-thats-where-the-atmospheric-methane-went/

    From Oregon State University – Scientists discover carbonate rocks are unrecognized methane sink

    CORVALLIS, Ore. – Since the first undersea methane seep was discovered 30 years ago, scientists have meticulously analyzed and measured how microbes in the seafloor sediments consume the greenhouse gas methane as part of understanding how the Earth works.

    The sediment-based microbes form an important methane “sink,” preventing much of the chemical from reaching the atmosphere and contributing to greenhouse gas accumulation. As a byproduct of this process, the microbes create a type of rock known as authigenic carbonate, which while interesting to scientists was not thought to be involved in the processing of methane.

    That is no longer the case. A team of scientists has discovered that these authigenic carbonate rocks also contain vast amounts of active microbes that take up methane. The results of their study, which was funded by the National Science Foundation, were reported today in the journal Nature Communications.

    “No one had really examined these rocks as living habitats before,” noted Andrew Thurber, an Oregon State University marine ecologist and co-author on the paper. “It was just assumed that they were inactive. In previous studies, we had seen remnants of microbes in the rocks – DNA and lipids – but we thought they were relics of past activity. We didn’t know they were active.

    “This goes to show how the global methane process is still rather poorly understood,” Thurber added.

    Lead author Jeffrey Marlow of the California Institute of Technology and his colleagues studied samples from authigenic compounds off the coasts of the Pacific Northwest (Hydrate Ridge), northern California (Eel River Basin) and central America (the Costa Rica margin). The rocks range in size and distribution from small pebbles to carbonate “pavement” stretching dozens of square miles.

    “Methane-derived carbonates represent a large volume within many seep systems and finding active methane-consuming archaea and bacteria in the interior of these carbonate rocks extends the known habitat for methane-consuming microorganisms beyond the relatively thin layer of sediment that may overlay a carbonate mound,” said Marlow, a geobiology graduate student in the lab of Victoria Orphan of Caltech.

    These assemblages are also found in the Gulf of Mexico as well as off Chile, New Zealand, Africa, Europe – “and pretty much every ocean basin in the world,” noted Thurber, an assistant professor (senior research) in Oregon State’s College of Earth, Ocean, and Atmospheric Sciences.

    The study is important, scientists say, because the rock-based microbes potentially may consume a huge amount of methane. The microbes were less active than those found in the sediment, but were more abundant – and the areas they inhabit are extensive, making their importance potential enormous. Studies have found that approximately 3-6 percent of the methane in the atmosphere is from marine sources – and this number is so low due to microbes in the ocean sediments consuming some 60-90 percent of the methane that would otherwise escape.

    Now those ratios will have to be re-examined to determine how much of the methane sink can be attributed to microbes in rocks versus those in sediments. The distinction is important, the researchers say, because it is an unrecognized sink for a potentially very important greenhouse gas.

    “We found that these carbonate rocks located in areas of active methane seeps are themselves more active,” Thurber said. “Rocks located in comparatively inactive regions had little microbial activity. However, they can quickly activate when methane becomes available.

    “In some ways, these rocks are like armies waiting in the wings to be called upon when needed to absorb methane.”

    The ocean contains vast amounts of methane, which has long been a concern to scientists. Marine reservoirs of methane are estimated to total more than 455 gigatons and may be as much as 10,000 gigatons carbon in methane. A gigaton is approximate 1.1 billion tons.

    By contrast, all of the planet’s gas and oil deposits are thought to total about 200-300 gigatons of carbon.



    [​IMG]
     
    #1139     Oct 15, 2014
  10. jem

    jem

    Look at that NASA bringing up facts to smite the agw lunatics again.

    NASA Study Finds 1934 Had Worst Drought of Last Thousand Years



    “It was the worst by a large margin, falling pretty far outside the normal range of variability that we see in the record,” said climate scientist Ben Cook at NASA’s Goddard Institute for Space Studies in New York. Cook is lead author of the study, which will publish in the Oct. 17 edition of Geophysical Research Letters.

    Two sets of conditions led to the severity and extent of the 1934 drought. First, a high-pressure system in winter sat over the west coast of the United States and turned away wet weather – a pattern similar to that which occurred in the winter of 2013-14. Second, the spring of 1934 saw dust storms, caused by poor land management practices, suppress rainfall.

    “In combination then, these two different phenomena managed to bring almost the entire nation into a drought at that time,” said co-author Richard Seager, professor at the Lamont-Doherty Earth Observatory of Columbia University in New York. “The fact that it was the worst of the millennium was probably in part because of the human role.”

    ...

    http://wattsupwiththat.com/2014/10/...934-had-worst-drought-of-last-thousand-years/
     
    #1140     Oct 15, 2014
    WeToddDid2 likes this.